首页> 外文会议>Signal Processing, Sensor Fusion, and Target Recognition XIV >Dempster-Shafer Theory, Bayesian Theory and Measure Theory
【24h】

Dempster-Shafer Theory, Bayesian Theory and Measure Theory

机译:Dempster-Shafer理论,贝叶斯理论和测度理论

获取原文
获取原文并翻译 | 示例

摘要

We use measure theoretic methods to describe the relationship between the Dempster Shafer (DS) theory and Bayesian (i.e. probability) theory. Within this framework, we demonstrated the relationships among Shafer's belief and plausibility, Dempster's lower and upper probabilities and inner and outer measures. Dempster's multivalued mapping is an example of a random set, a generalization of the concept of the random variable. Dempster's rule of combination is the product measure on the Cartesian product of measure spaces. The independence assumption of Dempster's rule arises from the nature of the problem in which one has knowledge of the marginal distributions but wants to calculate the joint distribution. We present an engineering example to clarify the concepts.
机译:我们使用测度理论方法来描述Dempster Shafer(DS)理论与贝叶斯(即概率)理论之间的关系。在此框架内,我们展示了Shafer的信念和合理性,Dempster的上下概率以及内部和外部度量之间的关系。 Dempster的多值映射是随机集的一个示例,是随机变量概念的概括。 Dempster的合并规则是度量空间的笛卡尔积的乘积度量。 Dempster规则的独立性假设源于问题的性质,在该问题中,人们已了解边际分布,但想计算联合分布。我们提供一个工程示例来阐明概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号