首页> 外文会议>Signal processing, pattern recognition, and applications ; Computer graphics and imaging >YOUNG-ELDERLY GAIT CLASSIFICATION VIA PCA FEATURE EXTRACTION AND SVMS
【24h】

YOUNG-ELDERLY GAIT CLASSIFICATION VIA PCA FEATURE EXTRACTION AND SVMS

机译:通过PCA特征提取和SVMS对年轻人的步态进行分类

获取原文
获取原文并翻译 | 示例

摘要

The classification of gait patterns has great potential as a diagnostic tool, for example to identify at-risk gait in the elderly. This paper presents a method for classifying young-elderly gait via principal component analysis (PCA) feature extraction and support vector machine (SVM) classification. For this purpose, 3D marker trajectories were collected from 36 female subjects walking on a treadmill. PCA dimensionality reduction was directly performed on these trajectories. Using SVMs with linear kernel, a classification rate of 91.7% was achieved. In contrast to other published gait classification methods, this approach does not require prior knowledge of specific time points in the gait cycle (e.g. heel-strike and toe-off) and it does not involve biomechanical models which are usually based on additional assumptions (e.g. joint center positions). Moreover, SVMs with linear kernel allow visualizing the group differences by projecting the normal vector of the decision boundary back onto the original marker space.
机译:步态模式的分类作为诊断工具具有巨大潜力,例如,识别老年人的高风险步态。本文提出了一种通过主成分分析(PCA)特征提取和支持向量机(SVM)分类对老年人步态进行分类的方法。为此,从36名在跑步机上行走的女性受试者中收集了3D标记轨迹。直接在这些轨迹上进行PCA降维。使用具有线性核的SVM,分类率达到91.7%。与其他已发表的步态分类方法相比,该方法不需要事先了解步态周期中的特定时间点(例如,后跟打击和脚趾离开),并且不涉及通常基于其他假设的生物力学模型(例如,关节中心位置)。而且,具有线性核的SVM可以通过将决策边界的法线向量投影回原始标记空间来可视化组差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号