首页> 外文会议>Signal processing, pattern recognition, and applications >MULTI-VIEW FORESTS BASED ON DEMPSTER-SHAFER EVIDENCE THEORY: A NEW CLASSIFIER ENSEMBLE METHOD
【24h】

MULTI-VIEW FORESTS BASED ON DEMPSTER-SHAFER EVIDENCE THEORY: A NEW CLASSIFIER ENSEMBLE METHOD

机译:基于证据论证据理论的多视角森林:一种新的分类器包容性方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a method to construct ensembles of tree-structured classifiers using multi-view learning instead of feature subset selection is proposed. An essential requirement to train an effective classifier ensemble is the diversity among the base individual classifiers. In order to construct diverse individual classifiers, it is assumed that the object to be classified is represented through multiple feature sets (views). Different views of the data can then be combined to improve the accuracy of the learning task. Multi-view Forests have been examined on a benchmark data set of 3D-object recognition based on 2D camera images. Results show that multi-view learning can improve the performance of the individual classifiers and the whole ensemble, and thus promoting the use of multi-view forests.
机译:提出了一种使用多视图学习代替特征子集选择的树状分类器集合体的方法。训练有效的分类器集合的基本要求是基本个体分类器之间的多样性。为了构造各种单独的分类器,假定要分类的对象通过多个特征集(视图)表示。然后可以组合数据的不同视图以提高学习任务的准确性。在基于2D摄像机图像的3D对象识别基准数据集上检查了多视图森林。结果表明,多视图学习可以提高单个分类器和整个集合的性能,从而促进多视图森林的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号