首页> 外文会议>Signal amp; image processing >USING PARTICLE FILTERS TO DETECT POLYGON STRUCTURES OF FIXED SHAPE IN STILL IMAGES
【24h】

USING PARTICLE FILTERS TO DETECT POLYGON STRUCTURES OF FIXED SHAPE IN STILL IMAGES

机译:使用粒子过滤器检测静止图像中固定形状的多边形结构

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel method that uses particle filters to track boundaries of polygon structures with fixed shape and variable size through fields of pixel gradients and corners detected in images. Each match combines many attempts, based on sequential Monte Carlo sampling, to track a single polygon boundary. A polygon match is produced whenever at least one pair of adjacent corners is detected. The particle state variables capture geometric information about polygon matches, and the measurement variables capture photometric information derived from pixel gray values in the image. Measurement emphasis can be adjusted so that match rankings are based more on evidence of corners or more on evidence of edges in the image. We enable boundaries to be tracked efficiently by showing that for n-sided polygons of fixed shape, the number of required edge similarity calculations per polygon match can be reduced to only n no matter how many sequential Monte Carlo attempts are made to track its boundary. Several compelling match results against diverse clutter backgrounds are provided.
机译:我们介绍了一种新颖的方法,该方法使用粒子滤镜通过图像中检测到的像素梯度和角场来跟踪具有固定形状和可变大小的多边形结构的边界。每个匹配项都基于顺序蒙特卡洛采样组合了许多尝试,以跟踪单个多边形边界。只要检测到至少一对相邻的角,就会产生多边形匹配。粒子状态变量捕获有关多边形匹配的几何信息,而测量变量捕获从图像中像素灰度值得出的光度信息。可以调整测量重点,以使匹配排名更多基于拐角证据或更多基于图像边缘的证据。通过显示固定形状的n边多边形,无论进行多少次连续蒙特卡洛尝试跟踪其边界,每次多边形匹配所需的边缘相似度计算的次数都可以减少到n,我们可以有效地跟踪边界。提供了针对各种杂乱背景的一些令人信服的比赛结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号