首页> 外文会议>Sensors and systems for space applications VI >Engineered plasma interactions for geomagnetic propulsion of ultra small satellites
【24h】

Engineered plasma interactions for geomagnetic propulsion of ultra small satellites

机译:工程等离子体相互作用,用于超小型卫星的地磁推进

获取原文
获取原文并翻译 | 示例

摘要

Previous astrophysical studies have explained the orbital dynamics of particles that acquire a high electrostatic charge. In low Earth orbit, the charge collected by a microscopic particle or an ultra-small, low-mass satellite interacts with the geomagnetic field to induce the Lorentz force which, in the ideal case, may be exploited as a form of propellantless propulsion. Efficient mechanisms for negative and positive electrostatic charging of a so-called attosatellite are proposed considering material, geometry, and emission interactions with the ionosphere's neutral plasma with characteristic Debye length. A novel model-based plasma physics study was undertaken to optimize the positive charge mechanism quantified by the system charge-to-mass ratio. In the context of the practical system design considered, a positive charge-to-mass ratio on the order of 1.9 ×10~(-9) C/kg is possible with maximum spacecraft potential equal to the sum of the kinetic energy of electrons from active field emission (+43 V) and less than +5V from passive elements. The maximum positive potential is less than what is possible with negative electrostatic charging due to differences in thermal velocity and number density of electronic and ionic species. These insights are the foundation of a practical system design.
机译:先前的天体物理学研究已经解释了获得高静电荷的粒子的轨道动力学。在低地球轨道上,由微观粒子或超小,低质量卫星收集的电荷与地磁场相互作用,以产生洛伦兹力,在理想情况下,洛伦兹力可被用作无推进剂的一种形式。考虑到材料,几何形状以及与具有特征德拜长度的电离层中性等离子体的发射相互作用,提出了一种有效的机制,用于所谓的卫星的负和正静电充电。进行了基于模型的新型等离子体物理研究,以优化由系统荷质比量化的正电荷机制。在实际系统设计的背景下,当航天器的最大电势等于来自电子的动能之和时,可能有1.9×10〜(-9)C / kg的正电荷质量比。有源场发射(+43 V),而无源元件的发射场小于+ 5V。由于电子和离子物质的热速度和数量密度不同,最大的正电位小于带负静电的电位。这些见解是实用系统设计的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号