首页> 外文学位 >Modeling of plasma propulsion using an inflated magnetic field and its interaction with a fast plasma stream.
【24h】

Modeling of plasma propulsion using an inflated magnetic field and its interaction with a fast plasma stream.

机译:使用充气磁场及其与快速等离子体流的相互作用对等离子体推进进行建模。

获取原文
获取原文并翻译 | 示例

摘要

It has been proposed to extract momentum from the solar wind for spacecraft propulsion in deep space. For this purpose, a magnetic bubble is inflated from the spacecraft. The magnetic bubble inflation is affected by the expansion of a dense warm plasma in the magnetic field created by a solenoid aboard the spacecraft. The interaction between the inflated magnetic field and solar wind is likely to affect the transfer of momentum for the purpose of propulsion. The aim of our research here is to study the feasibility of this propulsion scheme by means of numerical simulations. For this purpose, we developed a 3-D hybrid particle code to model (i) the expansion of plasma in an ambient magnetic field created by a solenoid and (ii) the interaction of a plasma stream with the inflated magnetic field. The code is hybrid in the sense that ions are treated as particles and electrons as an isothermal fluid. We solve the coupled set of Maxwell's equations and the electron momentum equation for the electromagnetic fields using a predictor-corrector method.; Using the 3-D simulations, we have demonstrated that when a warm and high-density plasma is injected in solenoidal magnetic fields, the trapping of the plasma in a magnetic mirror creates a dense plasma. When the trapped plasma energy densities (thermal and dynamic) exceed the magnetic energy density, the expanding plasma inflates the magnetic field lines. The extent of field inflation is seen to be greatly dependent on the injection velocity of the thermal plasma. The higher the injection velocity, the larger is the size of the inflated magnetic bubble. It is seen that the original magnetic field, which decreases as R−3, is stretched to the extent where it falls as R−α, where R is the distance from the center of the solenoid and α is found in the range 1 ≤ α ≤ 2.; We have also demonstrated that when a plasma stream resembling the solar wind interacts with the expanding magnetic bubble, a magnetopause or bow-shock like structure is formed at the interaction region. The bow-shock is first pushed outward by the magnetic field undergoing inflation, but it eventually becomes standstill when the magnetic pressure and the plasma stream pressure at the interaction region balance each other with no further inflation in the magnetic field. We see accumulation of the plasma stream particles in the bow-shock while some of them are reflected back also; the piling up and the reflection imply a loss in the plasma stream momentum. This loss in momentum of the plasma stream exerts a force on the magnetic bubble and thus, possibly on the spacecraft.
机译:已经提出从太阳风中提取动量以用于航天器在深空的推进。为此,从航天器中吹出了一个磁性气泡。气泡的膨胀受航天器上螺线管产生的磁场中浓热等离子体的膨胀的影响。为了推进,膨胀的磁场和太阳风之间的相互作用可能会影响动量的传递。我们在此进行研究的目的是通过数值模拟研究该推进方案的可行性。为此目的,我们开发了3-D混合粒子代码来模拟(i)等离子体在螺线管产生的环境磁场中的膨胀以及(ii)等离子体流与膨胀磁场的相互作用。该代码在将离子视为粒子而将电子视为等温流体的意义上是混合的。我们使用预测器-校正器方法求解了电磁场的麦克斯韦方程组和电子动量方程的耦合集。使用3-D模拟,我们已经证明,当将温暖而高密度的等离子体注入螺线管磁场中时,等离子体在电磁镜中的捕获会产生密集的等离子体。当捕获的等离子体能量密度(热能和动态能)超过磁能密度时,膨胀的等离子体会使磁场线膨胀。可以看到,场膨胀的程度很大程度上取决于热等离子体的注入速度。注射速度越高,膨胀的磁性气泡的尺寸越大。可以看出,以 R -3 减小的原始磁场被扩展到以 R 下降的程度。 -α,其中 R 是距螺线管中心的距离,α的范围为1≤α≤2。我们还证明了,当类似于太阳风的等离子体流与膨胀的磁泡相互作用时,在相互作用区域会形成磁绝顶或弓形冲击状的结构。弓形冲击首先被经受膨胀的磁场向外推,但是当相互作用区域处的磁压力和等离子体流压力彼此平衡而磁场中没有进一步膨胀时,弓形冲击最终变得静止。我们看到等离子流粒子在弓形波中堆积,而其中一些也被反射回去。堆积和反射意味着等离子流动量的损失。等离子体流动量的这种损失在磁泡上施加了力,因此在航天器上产生了力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号