首页> 外文会议>Sensors, and Command, Control, Communications, and Intelligence(C3I) Technologies for Homeland Security and Homeland Defense V >Intelligence-Aided Multitarget Tracking for Urban Operations A Case Study: Counter Terrorism
【24h】

Intelligence-Aided Multitarget Tracking for Urban Operations A Case Study: Counter Terrorism

机译:城市运营的情报辅助多目标跟踪案例研究:反恐

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a framework for tracking multiple mobile targets in an urban environment based on data from multiple sources of information, and for evaluating the threat these targets pose to assets of interest (AOI). The motivating scenario is one where we have to track many targets, each with different (unknown) destinations and/or intents. The tracking algorithm is aided by information about the urban environment (e.g., road maps, buildings, hideouts), and strategic and intelligence data. The tracking algorithm needs to be dynamic in that it has to handle a time-varying number of targets and the ever-changing urban environment depending on the locations of the moving objects and AOI. Our solution uses the variable structure interacting multiple model (VS-IMM) estimator, which has been shown to be effective in tracking targets based on road map information. Intelligence information is represented as target class information and incorporated through a combined likelihood calculation within the VS-IMM estimator. In addition, we develop a model to calculate the probability that a particular target can attack a given AOL This model for the calculation of the probability of attack is based on the target kinematic and class information. Simulation results are presented to demonstrate the operation of the proposed framework on a representative scenario.
机译:在本文中,我们提出了一个框架,该框架可基于来自多个信息源的数据跟踪城市环境中的多个移动目标,并评估这些目标对目标资产(AOI)构成的威胁。激励方案是我们必须跟踪许多目标的情况,每个目标都有不同(未知)的目的地和/或意图。跟踪算法由有关城市环境的信息(例如,路线图,建筑物,藏身处)以及战略和情报数据所辅助。跟踪算法必须是动态的,因为它必须根据移动物体和AOI的位置来处理随时间变化的目标数量和不断变化的城市环境。我们的解决方案使用可变结构交互多模型(VS-IMM)估计器,该估计器已被证明可有效地根据道路地图信息跟踪目标。情报信息表示为目标类别信息,并通过VS-IMM估计器中的组合似然计算进行合并。此外,我们开发了一个模型来计算特定目标可以攻击给定AOL的概率。该模型用于计算攻击概率是基于目标运动学和类别信息。给出了仿真结果,以证明所提出框架在代表性场景下的运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号