首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Measure transformed canonical correlation analysis with application to financial data
【24h】

Measure transformed canonical correlation analysis with application to financial data

机译:衡量转换后的规范相关分析并应用于财务数据

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new nonlinear generalization of linear canonical correlation analysis (LCCA) is derived. This framework, called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the considered pair of random vectors after transformation of their joint probability distribution. The proposed transform is structured by a pair of nonnegative functions called the MT-functions. It preserves statistical independence and maps the joint probability distribution into a set of joint probability measures on the joint observation space. Specification of MT-functions in the exponential family, leads to MTCCA, which, in contrast to LCCA, is capable of detecting nonlinear dependencies. In the paper, MTCCA is illustrated for recovery of a nonlinear system with known structure, and for construction of networks that analyze long-term associations between companies traded in the NASDAQ and NYSE stock markets.
机译:本文推导了一种新的线性规范相关分析(LCCA)的非线性概括。该框架称为测度转换规范相关分析(MTCCA),在对联合向量的概率分布进行转换后,将LCCA应用于所考虑的随机向量对。所提出的变换由一对称为MT函数的非负函数构成。它保留了统计独立性,并将联合概率分布映射到联合观察空间上的一组联合概率度量。指数族中MT功能的规范导致了MTCCA,与LCCA相反,MTCCA能够检测非线性相关性。在本文中,说明了MTCCA,用于恢复具有已知结构的非线性系统,以及用于构建分析在纳斯达克和纽约证券交易所股票市场交易的公司之间的长期关联的网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号