首页> 外文期刊>Signal Processing, IEEE Transactions on >On Measure Transformed Canonical Correlation Analysis
【24h】

On Measure Transformed Canonical Correlation Analysis

机译:测度变换典范相关分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, linear canonical correlation analysis (LCCA) is generalized by applying a structured transform to the joint probability distribution of the considered pair of random vectors, i.e., a transformation of the joint probability measure defined on their joint observation space. This framework, called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the data after transformation of the joint probability measure. We show that judicious choice of the transform leads to a modified canonical correlation analysis, which, in contrast to LCCA, is capable of detecting non-linear relationships between the considered pair of random vectors. Unlike kernel canonical correlation analysis, where the transformation is applied to the random vectors, in MTCCA the transformation is applied to their joint probability distribution. This results in performance advantages and reduced implementation complexity. The proposed approach is illustrated for graphical model selection in simulated data having non-linear dependencies, and for measuring long-term associations between companies traded in the NASDAQ and NYSE stock markets.
机译:在本文中,通过对所考虑的随机向量对的联合概率分布进行结构化变换(即在其联合观测空间上定义的联合概率测度​​的变换),对线性典范相关分析(LCCA)进行了概括。该框架称为度量转换规范相关分析(MTCCA),在联合概率度量转换后将LCCA应用于数据。我们表明,明智地选择转换会导致修改后的规范相关分析,与LCCA相比,它能够检测所考虑的随机矢量对之间的非线性关系。与内核规范相关分析不同,在变换中将其应用于随机向量,在MTCCA中,将变换应用于其联合概率分布。这带来了性能优势并降低了实现复杂性。说明了所提出的方法,用于在具有非线性依赖性的模拟数据中进行图形模型选择,以及用于测量在纳斯达克和纽约证券交易所股票市场交易的公司之间的长期关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号