首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >Distributed posterior Cramér-Rao lower bound for nonlinear sequential Bayesian estimation
【24h】

Distributed posterior Cramér-Rao lower bound for nonlinear sequential Bayesian estimation

机译:非线性后验贝叶斯估计的分布式后验Cramér-Rao下界

获取原文
获取原文并翻译 | 示例

摘要

In distributed sensor networks, the posterior Cramér-Rao lower bound (PCRLB) has recently been used [1] as a selection criteria for sensor management decisions, where new sensor nodes are deployed or existing ones reactivated to optimize the network''s performance. Previous algorithms to compute the PCRLB are derived for the centralized [2] and hierarchical architectures [3] using a fusion centre that makes them inappropriate for distributed sensor management. Only recently a suboptimal expression [1] for the distributed architecture has been proposed, which can at times lead to large errors especially in systems with highly non-linear dynamics. The paper derives the optimal PCRLB for the distributed architecture. In other words, we derive a recursive procedure to determine the overall Fisher information matrix (FIM), i.e., the inverse of the PCRLB, from local FIMs of the distributed estimators. The proposed distributed PCRLB is independent of the filtering mechanism used and closely follows its centralized counterpart.
机译:在分布式传感器网络中,后Cramér-Rao下界(PCRLB)最近已被用作[1]作为传感器管理决策的选择标准,其中部署了新的传感器节点或重新激活了现有的传感器节点以优化网络的性能。使用融合中心为集中式[2]和分层架构[3]导出了用于计算PCRLB的先前算法,这使其不适用于分布式传感器管理。直到最近,才提出了针对分布式体系结构的次优表达式[1],这有时会导致较大的误差,尤其是在具有高度非线性动力学的系统中。本文推导了分布式架构的最优PCRLB。换句话说,我们从分布式估计量的局部FIM派生一个递归过程,以确定整个Fisher信息矩阵(FIM),即PCRLB的逆。所提出的分布式PCRLB与所使用的过滤机制无关,并且紧随其集中式副本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号