首页> 外文会议>Sensor Array and Multichannel Signal Processing Workshop (SAM), 2012 IEEE 7th >The locally most powerful invariant test for detecting a rank-P Gaussian signal in white noise
【24h】

The locally most powerful invariant test for detecting a rank-P Gaussian signal in white noise

机译:用于检测白噪声中的P级高斯信号的局部最强大的不变检验

获取原文
获取原文并翻译 | 示例

摘要

Spectrum sensing has become one of the main components of a cognitive transmitter. Conventional detectors suffer from noise power uncertainties and multiantenna detectors have been proposed to overcome this difficulty, and to improve the detection performance. However, most of the proposed multiantenna detectors are based on non-optimal techniques, such as the generalized likelihood ratio test (GLRT), or even heuristic approaches that are not based on first principles. In this work, we derive the locally most powerful invariant test (LMPIT), that is, the optimal invariant detector for close hypotheses, or equivalently, for a low signal-to-noise ratio (SNR). The traditional approach, based on the distributions of the maximal invariant statistic, is avoided thanks to Wijsman's theorem, which does not need these distributions. Our findings show that, in the low SNR regime, and in contrast to the GLRT, the additional spatial structure imposed by the signal model is irrelevant for optimal detection. Finally, we use Monte Carlo simulations to illustrate the good performance of the LMPIT.
机译:频谱感测已经成为认知发射机的主要组成部分之一。常规的检测器具有噪声功率不确定性,并且已经提出了多天线检测器来克服该困难,并提高检测性能。但是,大多数提议的多天线检测器都是基于非最佳技术,例如广义似然比测试(GLRT),甚至是不基于第一原理的启发式方法。在这项工作中,我们推导了局部最强大的不变检验(LMPIT),也就是针对近似假设或等效地针对低信噪比(SNR)的最佳不变检测器。有了Wijsman定理,就无需使用基于最大不变统计量分布的传统方法,该方法不需要这些分布。我们的发现表明,在低SNR的情况下,与GLRT相比,信号模型强加的附加空间结构与最佳检测无关。最后,我们使用蒙特卡洛模拟来说明LMPIT的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号