首页> 外文期刊>Information Theory, IEEE Transactions on >Locally Most Powerful Invariant Tests for Correlation and Sphericity of Gaussian Vectors
【24h】

Locally Most Powerful Invariant Tests for Correlation and Sphericity of Gaussian Vectors

机译:高斯向量的相关性和球度的局部最有效不变检验

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the existence of locally most powerful invariant tests (LMPIT) for the problem of testing the covariance structure of a set of Gaussian random vectors. The LMPIT is the optimal test for the case of close hypotheses, among those satisfying the invariances of the problem, and in practical scenarios can provide better performance than the typically used generalized likelihood ratio test (GLRT). The derivation of the LMPIT usually requires one to find the maximal invariant statistic for the detection problem and then derive its distribution under both hypotheses, which in general is a rather involved procedure. As an alternative, Wijsman's theorem provides the ratio of the maximal invariant densities without even finding an explicit expression for the maximal invariant. We first consider the problem of testing whether a set of $N$-dimensional Gaussian random vectors are uncorrelated or not, and show that the LMPIT is given by the Frobenius norm of the sample coherence matrix. Second, we study the case in which the vectors under the null hypothesis are uncorrelated and identically distributed, that is, the sphericity test for Gaussian vectors, for which we show that the LMPIT is given by the Frobenius norm of a normalized version of the sample covariance matrix. Finally, some numerical examples illustrate the performance of the proposed tests, which provide better results than their GLRT counterparts.
机译:在本文中,我们研究了针对一组高斯随机向量的协方差结构测试问题的局部最有效不变检验(LMPIT)的存在。对于满足假设不变性的近似假设,LMPIT是最佳的检验方法,在实际情况下,与通常使用的广义似然比检验(GLRT)相比,LMPIT可以提供更好的性能。 LMPIT的推导通常需要一个人来找到检测问题的最大不变统计量,然后根据两个假设推导其分布,这通常是一个相当复杂的过程。作为替代,Wijsman定理提供了最大不变密度的比值,甚至没有找到关于最大不变性的明确表达式。我们首先考虑测试一组 $ N $ 维高斯随机向量是否不相关的问题,并显示LMPIT由样本相干矩阵的Frobenius范数给出。其次,我们研究了零假设下的向量不相关且分布均匀的情况,即高斯向量的球形度测试,我们证明了LMPIT由样本归一化版本的Frobenius范数给出协方差矩阵。最后,一些数值示例说明了所提出测试的性能,这些测试提供了比GLRT同类产品更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号