首页> 外文会议>Semantic Computing, 2009. ICSC '09 >Detecting Significant Events in Personal Image Collections
【24h】

Detecting Significant Events in Personal Image Collections

机译:检测个人图像集中的重要事件

获取原文

摘要

The organization and retrieval of images and videos is a problem for the typical consumer. A typical image collection includes many pictures of common activities that are not considered to be important by the user. These images inflate the number of assets in a collection to the point where it is difficult to find significant events when browsing. It is useful for the user to be able to browse an overview of important events in their collection. This paper proposes a new approach for identifying a small sub-set of events in a large collection that have a high probability of being significant. Using techniques from time-series modeling, a representation of a userȁ9;s picture-taking behavior is constructed. The detection of significant events is based on the deviation from this learned representation. The results match a userȁ9;s judgment of significance and enables efficient browsing and searching of the collection by focusing on a small set of images.
机译:图像和视频的组织和检索对于典型的消费者来说是一个问题。典型的图像集合包括许多常见活动的图片,这些图片对用户而言并不重要。这些图像使集合中的资产数量膨胀到浏览时很难找到重要事件的程度。对于用户来说,能够浏览其收藏集中的重要事件的概述非常有用。本文提出了一种新的方法,用于识别大型集合中具有重要意义的小事件集。使用时间序列建模中的技术,可以构建用户9的拍照行为。重要事件的检测基于与该学习表示的偏差。结果与用户的9判断相符,并且通过关注一小组图像可以有效地浏览和搜索集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号