首页> 外文会议>Second workshop on computational approaches to deception detection >Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News
【24h】

Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News

机译:假新闻还是真相?使用讽刺提示来发现潜在的误导性新闻

获取原文
获取原文并翻译 | 示例

摘要

Satire is an attractive subject in deception detection research: it is a type of deception that intentionally incorporates cues revealing its own de-ceptiveness. Whereas other types of fabrications aim to instill a false sense of truth in the reader, a successful satirical hoax must eventually be exposed as a jest. This paper provides a conceptual overview of satire and humor, elaborating and illustrating the unique features of satirical news, which mimics the format and style of journalistic reporting. Satirical news stories were carefully matched and examined in contrast with their legitimate news counterparts in 12 contemporary news topics in 4 domains (civics, science, business, and "soft" news). Building on previous work in satire detection, we proposed an SVM-based algorithm, enriched with 5 predictive features (Absurdity, Humor, Grammar, Negative Affect, and Punctuation) and tested their combinations on 360 news articles. Our best predicting feature combination (Absurdity, Grammar and Punctuation) detects satirical news with a 90% precision and 84% recall (F-score=87%). Our work in algorithmically identifying satirical news pieces can aid in minimizing the potential deceptive impact of satire.
机译:讽刺是欺骗检测研究中的一个有吸引力的主题:这是一种欺骗,故意包含揭示其自身欺骗性的线索。尽管其他类型的制作旨在向读者灌输错误的真实感,但成功的讽刺骗局最终必须被当作玩笑。本文提供了讽刺和幽默的概念概述,阐述和说明了讽刺新闻的独特特征,模仿了新闻报道的格式和风格。讽刺性新闻故事经过仔细匹配,并与它们在四个领域(公民,科学,商业和“软”新闻)的12个当代新闻主题中的合法新闻对立物进行对比。在以前的讽刺检测工作基础上,我们提出了一种基于SVM的算法,该算法丰富了5种预测功能(荒谬,幽默,语法,负面影响和标点符号),并在360条新闻文章上测试了它们的组合。我们最好的预测功能组合(荒谬,语法和标点符号)以90%的准确度和84%的回忆率(F分数= 87%)检测讽刺新闻。我们在算法上确定讽刺新闻的工作可以帮助最大程度地减少讽刺的潜在欺骗影响。

著录项

  • 来源
  • 会议地点 San Diego CA(US)
  • 作者单位

    Language and Information Technology Research Lab (LIT.RL) Faculty of Information and Media Studies University of Western Ontario, London, Ontario, CANADA;

    Language and Information Technology Research Lab (LIT.RL) Faculty of Information and Media Studies University of Western Ontario, London, Ontario, CANADA;

    Language and Information Technology Research Lab (LIT.RL) Faculty of Information and Media Studies University of Western Ontario, London, Ontario, CANADA;

    Language and Information Technology Research Lab (LIT.RL) Faculty of Information and Media Studies University of Western Ontario, London, Ontario, CANADA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号