首页> 外文会议>Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization amp; Transmission. >3D Object Detection and Localization Using Multimodal Point Pair Features
【24h】

3D Object Detection and Localization Using Multimodal Point Pair Features

机译:使用多峰点对特征的3D对象检测和定位

获取原文
获取原文并翻译 | 示例

摘要

Object detection and localization is a crucial step for inspection and manipulation tasks in robotic and industrial applications. We present an object detection and localization scheme for 3D objects that combines intensity and depth data. A novel multimodal, scale- and rotation-invariant feature is used to simultaneously describe the object's silhouette and surface appearance. The object's position is determined by matching scene and model features via a Hough-like local voting scheme. The proposed method is quantitatively and qualitatively evaluated on a large number of real sequences, proving that it is generic and highly robust to occlusions and clutter. Comparisons with state of the art methods demonstrate comparable results and higher robustness with respect to occlusions.
机译:对象检测和定位是机器人和工业应用中检查和操作任务的关键步骤。我们提出了结合强度和深度数据的3D对象的对象检测和定位方案。一种新颖的多模式,比例和旋转不变特征可用于同时描述对象的轮廓和表面外观。通过类似霍夫式的局部投票方案,通过匹配场景和模型特征来确定对象的位置。所提出的方法在大量真实序列上进行了定量和定性评估,证明了它是通用的并且对遮挡和杂波具有很高的鲁棒性。与现有技术方法的比较表明,在咬合方面具有可比的结果和更高的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号