【24h】

3D Body Reconstruction for Immersive Interaction

机译:身临其境的3D身体重构

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an approach for capturing 3D body motion and inferring human body posture from detected silhouettes. We show that the integration of two or more silhouettes allows us to perform a 3D body reconstruction while each silhouette can be used for identifying human body postures. The 3D reconstruction is based on the representation of body parts using Generalized Cylinders providing an estimation of the 3D shape of the human body. The 3D shape description is refined by fitting an articulated body model using a particle filter technique. Identifying human body posture from the 2D silhouettes can reduce the complexity of the particle filtering by reducing the search space. We present an appearance-based learning method that uses a shape descriptor of the 2D silhouette for classifying and identifying human posture. The proposed method does not require an articulated body model fitted onto the reconstructed 3D geometry of the human body: It complements the articulated body model since we can define a mapping between the observed shape and the learned descriptions for inferring the articulated body model.
机译:在本文中,我们提出了一种捕获3D人体运动并从检测到的轮廓推断人体姿势的方法。我们证明了两个或更多轮廓的集成使我们能够执行3D人体重建,而每个轮廓都可用于识别人体姿势。 3D重建基于使用通用圆柱体的身体部位表示,提供了人体3D形状的估计。通过使用粒子过滤器技术拟合关节模型来完善3D形状描述。从2D轮廓识别人体姿势可以通过减少搜索空间来降低粒子过滤的复杂性。我们提出了一种基于外观的学习方法,该方法使用2D轮廓的形状描述符对人的姿势进行分类和识别。所提出的方法不需要适合人体的3D几何结构的关节模型:它补充了关节模型,因为我们可以定义观察到的形状和所学描述之间的映射以推断关节模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号