首页> 外文会议>Scale space and variational methods in computer vision >Extrapolation of Vector Fields Using the Infinity Laplacian and with Applications to Image Segmentation
【24h】

Extrapolation of Vector Fields Using the Infinity Laplacian and with Applications to Image Segmentation

机译:使用无穷拉普拉斯算子对向量场进行外推及其在图像分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate a new Gradient-Vector-Flow (GVF)( [38])-inspired static external force field for active contour models, deriving from the edge map of a given image and allowing to increase the capture range. Contrary to prior related works, we reduce the number of unknowns to a single one v by assuming that the expected vector field is the gradient field of a scalar function. The model is phrased in terms of a functional minimization problem comprising a data fidelity term and a regularizer based on the super norm of Dv. The minimization is achieved by solving a second order singular degenerate parabolic equation. A comparison principle as well as the existence/uniqueness of a viscosity solution together with regularity results are established. Experimental results for image segmentation with details of the algorithm are also presented.
机译:在本文中,我们研究了一种新的梯度矢量流(GVF)([38])启发的主动轮廓模型的静态外力场,该场来自给定图像的边缘图,并允许增加捕获范围。与先前的相关工作相反,我们通过假设期望的矢量场是标量函数的梯度场,将未知数减少到一个v。用包含数据保真度项和基于Dv的超范数的正则化器的功能最小化问题来表述模型。通过求解二阶奇异退化的抛物方程来实现最小化。建立了比较原理以及粘度溶液的存在/唯一性和规律性结果。还提供了具有算法细节的图像分割实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号