【24h】

Linear Image Reconstruction by Sobolev Norms on the Bounded Domain

机译:Sobolev范数在有界域上的线性图像重构

获取原文
获取原文并翻译 | 示例

摘要

The reconstruction problem is usually formulated as a vari-ational problem in which one searches for that image that minimizes a so called prior (image model) while insisting on certain image features to be preserved. When the prior can be described by a norm induced by some inner product on a Hilbert space the exact solution to the varia-tional problem can be found by orthogonal projection. In previous work we considered the image as compactly supported in L_2(R~2) and we used Sobolev norms on the unbounded domain including a smoothing parameter γ> 0 to tune the smoothness of the reconstruction image. Due to the assumption of compact support of the original image components of the reconstruction image near the image boundary are too much penalized. Therefore we minimize Sobolev norms only on the actual image domain, yielding much better reconstructions (especially for γ >> 0). As an example we apply our method to the reconstruction of singular points that are present in the scale space representation of an image.
机译:重建问题通常被表述为一个变分问题,其中人们在坚持要保留某些图像特征的同时,搜索使所谓的先验(图像模型)最小化的图像。当先验可以由希尔伯特空间上的一些内积引起的范数来描述时,可以通过正交投影找到变分问题的精确解。在先前的工作中,我们认为图像在L_2(R〜2)中得到了紧密支持,并且我们在无界域上使用Sobolev范数(包括平滑参数γ> 0)来调整重建图像的平滑度。由于紧凑支撑的假设,在图像边界附近的重建图像的原始图像分量受到太多惩罚。因此,我们仅在实际图像域上最小化Sobolev范数,从而产生更好的重建效果(尤其是对于γ>> 0的情况)。作为示例,我们将我们的方法应用于重建图像的比例空间表示中存在的奇异点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号