首页> 外文会议>Satellite data compression, communication, and processing V >Lossy Hyperspectral Image Compression Tuned for Spectral Mixture Analysis Applications on NVidia? Graphics Processing Units
【24h】

Lossy Hyperspectral Image Compression Tuned for Spectral Mixture Analysis Applications on NVidia? Graphics Processing Units

机译:为在NVidia上进行光谱混合分析应用而调整的有损高光谱图像压缩?图形处理单元

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a computationally efficient approach for lossy compression of remotely sensed hyperspectral images which has been specifically tuned to preserve the relevant information required in spectral mixture analysis (SMA) applications. The proposed method is based on two steps: 1) endmember extraction, and 2) linear spectral unmixing. Two endmember extraction algorithms: the pixel purity index (PPI) and the automatic morphological endmember extraction (AMEE), and a fully constrained linear spectral unmixing (FCLSU) algorithm have been considered in this work to devise the proposed lossy compression strategy. The proposed methodology has been implemented in graphics processing units (GPUs) of NVidia? type. Our experiments demonstrate that it can achieve very high compression ratios when applied to standard hyperspectral data sets, and can also retain the relevant information required for spectral unmixing in a computationally efficient way, achieving speedups in the order of 26 on a NVidia? GeForce 8800 GTX graphic card when compared to an optimized implementation of the same code in a dual-core CPU.
机译:在本文中,我们开发了一种计算有效的方法来对遥感高光谱图像进行有损压缩,该方法经过专门调整以保留光谱混合分析(SMA)应用程序所需的相关信息。所提出的方法基于两个步骤:1)端元提取,和2)线性光谱分解。在这项工作中,已经考虑了两种端成员提取算法:像素纯度指数(PPI)和自动形态端成员提取(AMEE),以及完全约束的线性光谱分解(FCLSU)算法,以设计提出的有损压缩策略。拟议的方法已在NVidia的图形处理单元(GPU)中实现。类型。我们的实验表明,将其应用于标准高光谱数据集时,可以实现很高的压缩率,并且还可以以计算有效的方式保留光谱分解所需的相关信息,从而在NVidia上实现26倍的加速。与双核CPU中相同代码的优化实现相比,GeForce 8800 GTX图形卡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号