首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data
【24h】

Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data

机译:数字决策表的粗糙化:基因表达数据的案例研究

获取原文
获取原文并翻译 | 示例

摘要

We extend the standard rough set-based approach to be able to deal with huge amounts of numeric attributes versus small amount of available objects. We transform the training data using a novel way of non-parametric discretization, called roughfication (in contrast to fuzzifi-cation known from fuzzy logic). Given roughfied data, we apply standard rough set attribute reduction and then classify the testing data by voting among the obtained decision rules. Roughfication enables to search for reducts and rules in the tables with the original number of attributes and far larger number of objects. It does not require expert knowledge or any kind of parameter tuning or learning. We illustrate it by the analysis of the gene expression data, where the number of genes (attributes) is enormously large with respect to the number of experiments (objects).
机译:我们扩展了基于粗糙集的标准方法,以能够处理大量的数字属性而不是少量的可用对象。我们使用一种称为粗糙化的非参数离散化新方法来转换训练数据(与模糊逻辑已知的模糊化相反)。给定粗糙数据,我们应用标准粗糙集属性约简,然后通过对获得的决策规则进行投票对测试数据进行分类。通过粗糙化,可以在具有原始属性数量和大量对象的表中搜索归约和规则。它不需要专业知识或任何类型的参数调整或学习。我们通过分析基因表达数据来说明这一点,其中相对于实验(对象)的数量,基因(属性)的数量非常大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号