【24h】

Biometric Verification by Projections in Error Subspaces

机译:通过错误子空间中的投影进行生物特征验证

获取原文
获取原文并翻译 | 示例

摘要

A general methodology for design of biometric verification system is presented. It is based on linear feature discrimination using sequential compositions of several types of feature vector transformations: data centering , orthogonal projection onto linear subspace, vector component scaling, and orthogonal projection onto unit sphere. Projections refer to subspaces in global, within-class, and between-class error spaces. Twelve basic discrimination schemes are identified by compositions of subspace projections interleaved by scaling operations and single projection onto unit sphere. For the proposed discriminant features, the Euclidean norm of difference between query and average personal feature vectors is compared with the threshold corresponding to the required false acceptance rate. Moreover, the aggregation by geometric mean of distances in two schemes leads to better verification results. The methodology is tested and illustrated for the verification system based on facial 2D images.
机译:介绍了一种用于生物识别系统设计的通用方法。它基于线性特征判别,使用了几种类型的特征向量转换的顺序组合:数据居中,正交投影到线性子空间,向量分量缩放以及正交投影到单位球体。投影是指全局,类内和类间错误空间中的子空间。十二种基本判别方案是通过子空间投影的组合来确定的,这些子空间投影是通过缩放操作和单位球面上的单个投影交错而成的。对于提出的判别特征,将查询和平均个人特征向量之间的差异的欧几里得范数与对应于所需错误接受率的阈值进行比较。此外,在两种方案中按距离的几何平均值进行聚合可以得到更好的验证结果。该方法已针对基于面部2D图像的验证系统进行了测试和说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号