首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >An Analysis of Random Projection for Changeable and Privacy-Preserving Biometric Verification
【24h】

An Analysis of Random Projection for Changeable and Privacy-Preserving Biometric Verification

机译:可变投影和隐私保护生物特征验证的随机投影分析

获取原文
获取原文并翻译 | 示例

摘要

Changeability and privacy protection are important factors for widespread deployment of biometrics-based verification systems. This paper presents a systematic analysis of a random-projection (RP)-based method for addressing these problems. The employed method transforms biometric data using a random matrix with each entry an independent and identically distributed Gaussian random variable. The similarity- and privacy-preserving properties, as well as the changeability of the biometric information in the transformed domain, are analyzed in detail. Specifically, RP on both high-dimensional image vectors and dimensionality-reduced feature vectors is discussed and compared. A vector translation method is proposed to improve the changeability of the generated templates. The feasibility of the introduced solution is well supported by detailed theoretical analyses. Extensive experimentation on a face-based biometric verification problem shows the effectiveness of the proposed method.
机译:可变性和隐私保护是广泛部署基于生物特征的验证系统的重要因素。本文介绍了基于随机投影(RP)的方法来解决这些问题的系统分析。所采用的方法使用随机矩阵来转换生物特征数据,每个条目都是一个独立且分布均匀的高斯随机变量。详细分析了相似性和隐私保护属性,以及在转换域中生物特征信息的可更改性。具体地说,讨论并比较了高维图像矢量和降维特征矢量上的RP。提出了一种矢量转换方法,以提高所生成模板的可变性。详细的理论分析充分支持了所介绍解决方案的可行性。对基于面部的生物特征验证问题的大量实验表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号