首页> 外文会议>Rough Sets and Knowledge Technology; Lecture Notes in Artificial Intelligence; 4481 >A New Approach to Underdetermined Blind Source Separation Using Sparse Representation
【24h】

A New Approach to Underdetermined Blind Source Separation Using Sparse Representation

机译:基于稀疏表示的欠定盲源分离新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach to blind separation of sources using sparse representation in an underdetermined mixture. Firstly, we transform the observations into the new ones within the generalized spherical coordinates, through which the estimation of the mixing matrix is formulated as the estimation of the cluster centers. Secondly, we identify the cluster centers by a new classification algorithm, whereby the mixing matrix is estimated. The simulation results have shown the efficacy of the proposed algorithm.
机译:本文提出了一种在不确定混合物中使用稀疏表示来盲分离源的新方法。首先,我们在广义球坐标系下将观测值转换为新的观测值,由此将混合矩阵的估算公式化为聚类中心的估算值。其次,我们通过一种新的分类算法识别聚类中心,从而估计混合矩阵。仿真结果表明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号