首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >Smoothed Sarsa: Reinforcement learning for robot delivery tasks
【24h】

Smoothed Sarsa: Reinforcement learning for robot delivery tasks

机译:平滑的Sarsa:针对机器人交付任务的强化学习

获取原文

摘要

Our goal in this work is to make high level decisions for mobile robots. In particular, given a queue of prioritized object delivery tasks, we wish to find a sequence of actions in real time to accomplish these tasks efficiently. We introduce a novel reinforcement learning algorithm called Smoothed Sarsa that learns a good policy for these delivery tasks by delaying the backup reinforcement step until the uncertainty in the state estimate improves. The state space is modeled by a Dynamic Bayesian Network and updated using a Region-based Particle Filter. We take advantage of the fact that only discrete (topological) representations of entity locations are needed for decision-making, to make the tracking and decision making more efficient. Our experiments show that policy search leads to faster task completion times as well as higher total reward compared to a manually crafted policy. Smoothed Sarsa learns a policy orders of magnitude faster than previous policy search algorithms. We demonstrate our results on the Player/Stage simulator and on the Pioneer robot.
机译:我们在这项工作中的目标是为移动机器人做出高层决策。特别是,在给定优先级的对象交付任务队列的情况下,我们希望实时找到一系列操作来有效地完成这些任务。我们引入了一种新颖的强化学习算法,称为“平滑Sarsa”,它通过延迟备用强化步骤直到状态估计的不确定性得到改善,为这些交付任务学习了一个好的策略。状态空间由动态贝叶斯网络建模,并使用基于区域的粒子过滤器进行更新。我们利用以下事实:决策只需要实体位置的离散(拓扑)表示即可,从而使跟踪和决策更加有效。我们的实验表明,与手动制定的策略相比,策略搜索可导致更快的任务完成时间以及更高的总奖励。平滑Sarsa学习策略的速度比以前的策略搜索算法快几个数量级。我们在Player / Stage模拟器和Pioneer机器人上展示了我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号