首页> 外文期刊>Journal of supercomputing >Task scheduling, resource provisioning, and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm
【24h】

Task scheduling, resource provisioning, and load balancing on scientific workflows using parallel SARSA reinforcement learning agents and genetic algorithm

机译:使用并行Sarsa强化学习代理和遗传算法的科学工作流程任务调度,资源供应和负载平衡

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is one of the most popular distributed environments, in which, multiple powerful and heterogeneous resources are used by different user applications. Task scheduling and resource provisioning are two important challenges of cloud environment, called cloud resource management. Resource management is a major problem especially for scientific workflows due to their heavy calculations and dependency between their operations. Several algorithms and methods have been developed to manage cloud resources. In this paper, the combination of state-action-reward-state-action learning and genetic algorithm is used to manage cloud resources. At the first step, the intelligent agents schedule the tasks during the learning process by exploring the workflow. Then, in the resource provisioning step, each resource is assigned to an agent, and its utilization is attempted to be maximized in the learning process of its corresponding agent. This is conducted by selecting the most appropriate set of the tasks that maximizes the utilization of the resource. Genetic algorithm is utilized for convergence of the agents of the proposed method, and to achieve global optimization. The fitness function that has been exploited by this genetic algorithm seeks to achieve more efficient resource utilization and better load balancing by observing the deadlines of the tasks. The experimental results show that the proposed algorithm reduces makespan, enhances resource utilization, and improves load balancing, compared to MOHEFT and MCP, the well-known workflow scheduling algorithms of the literature.
机译:云计算是最流行的分布式环境之一,其中,不同的用户应用程序使用多种强大和异构的资源。任务调度和资源配置是云环境的两个重要挑战,称为云资源管理。资源管理是一个主要问题,特别是由于他们的运营之间的繁重计算和依赖性,因此是科学工作流程。已经开发了几种算法和方法来管理云资源。在本文中,用于管理云资源的状态 - 奖励状态行动学习和遗传算法的组合。在第一步,智能代理通过探索工作流程在学习过程中安排任务。然后,在资源供应步骤中,将每个资源分配给代理,并且尝试在其相应代理的学习过程中最大化其利用率。这是通过选择最合适的任务集来进行,这些任务集最大化资源的利用率。遗传算法用于提出方法的代理收敛,实现全局优化。通过该遗传算法利用的健身功能旨在通过观察任务的截止日期来实现更有效的资源利用和更好的负载平衡。实验结果表明,该算法减少了MAPESPAN,增强了资源利用,并改善了莫夫林和MCP,文献的众所周知的工作流程调度算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号