首页> 外文会议>Remotely sensed data compression, communications, and processing XII >Discriminant Power Analyses of Non-linear Dimension Expansion Methods
【24h】

Discriminant Power Analyses of Non-linear Dimension Expansion Methods

机译:非线性维数展开方法的判别力分析

获取原文
获取原文并翻译 | 示例

摘要

Most non-linear classification methods can be viewed as non-linear dimension expansion methods followed by a linear classifier. For example, the support vector machine (SVM) expands the dimensions of the original data using various kernels and classifies the data in the expanded data space using a linear SVM. In case of extreme learning machines or neural networks, the dimensions are expanded by hidden neurons and the final layer represents the linear classification. In this paper, we analyze the discriminant powers of various non-linear classifiers. Some analyses of the discriminating powers of non-linear dimension expansion methods are presented along with a suggestion of how to improve separability in non-linear classifiers.
机译:大多数非线性分类方法可以看作是线性分类器之后的非线性维数扩展方法。例如,支持向量机(SVM)使用各种内核扩展原始数据的维,并使用线性SVM在扩展的数据空间中对数据进行分类。在使用极限学习机或神经网络的情况下,维度会被隐藏的神经元扩展,最后一层代表线性分类。在本文中,我们分析了各种非线性分类器的判别力。提出了一些对非线性维数扩展方法的判别能力的分析,并提出了如何提高非线性分类器可分离性的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号