首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Introducing ROC Curves as Error Measure Functions: A New Approach to Train ANN-Based Biomedical Data Classifiers
【24h】

Introducing ROC Curves as Error Measure Functions: A New Approach to Train ANN-Based Biomedical Data Classifiers

机译:引入ROC曲线作为误差测量函数:一种训练基于ANN的生物医学数据分类器的新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the usage of the area (Az) under the Receiver Operating Characteristic (ROC) curve as error measure to guide the training process to build machine learning ANN-based classifiers for biomedical data analysis. Error measures (like root mean square error, RMS) are used to guide training algorithms measuring how far solutions are from the ideal classification, whereas it is well known that optimal classification rates do not necessarily yield to optimal Az's. Our hypothesis is that Az error measures can guide existing training algorithms to obtain better Az's than other error measures. This was tested after training 280 different configurations of ANN-based classifiers, with simulated annealing, using five biomedical binary datasets from the UCI machine learning repository with different test/train data splits. Each ANN configuration was trained both using the Az and RMS based error measures. In average Az was improved in 7.98% in testing data (9.32% for training data) when using 70% of the datasets elements for training. Further analysis reveals interesting patterns (Az improvement is greater when Az are lower). These results encourage us to further explore the usage of Az based error measures in training methods for classifiers in a more generalized manner.
机译:本文探讨了接收器工作特征(ROC)曲线下面积(Az)的使用作为误差度量,以指导训练过程来构建基于机器学习ANN的生物医学数据分析分类器。误差量度(如均方根误差,RMS)用于指导训练算法,以测量解决方案与理想分类之间的距离,而众所周知,最佳分类率不一定会产生最佳Az。我们的假设是,Az误差度量可以指导现有的训练算法以获得比其他误差度量更好的Az度量。在使用模拟退火训练了280种基于ANN的分类器的不同配置之后,使用来自UCI机器学习存储库的五个生物医学二进制数据集(具有不同的测试/训练数据拆分)对它们进行了测试。每种ANN配置都使用基于Az和RMS的误差度量进行了训练。使用70%的数据集元素进行训练时,测试数据的平均Az改善了7.98%(训练数据为9.32%)。进一步的分析揭示出有趣的模式(当Az较低时,Az改善更大)。这些结果鼓励我们以更广义的方式进一步探索基于Az的误差度量在分类器的训练方法中的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号