【24h】

Learning Relational Grammars from Sequences of Actions

机译:从动作序列中学习关系语法

获取原文
获取原文并翻译 | 示例

摘要

Many tasks can be described by sequences of actions that normally exhibit some form of structure and that can be represented by a grammar. This paper introduces FOSeq, an algorithm that learns grammars from sequences of actions. The sequences are given as low-level traces of readings from sensors that are transformed into a relational representation. Given a transformed sequence, FOSeq identifies frequent sub-sequences of n-items, or n-grams, to generate new grammar rules until no more frequent n-grams can be found. From m sequences of the same task, FOSeq generates m grammars and performs a generalization process over the best grammar to cover most of the sequences. The grammars induced by FOSeq can be used to perform a particular task and to classify new sequences. FOSeq was tested on robot navigation tasks and on gesture recognition with competitive performance against other approaches based on Hidden Markov Models.
机译:许多任务可以用通常表现出某种形式的结构并可以用语法表示的动作序列来描述。本文介绍了FOSeq,这是一种从动作序列中学习语法的算法。序列作为来自传感器的读数的低级跟踪给出,这些信号被转换为关系表示。给定一个经过转换的序列,FOSeq会识别n个项或n个语法词的频繁子序列,以生成新的语法规则,直到找不到更多的常见n个语法词为止。从相同任务的m个序列中,FOSeq生成m个语法,并在最佳语法上执行概括过程以覆盖大多数序列。 FOSeq产生的语法可用于执行特定任务并分类新序列。 FOSeq在机器人导航任务和手势识别方面进行了测试,与基于隐马尔可夫模型的其他方法相比,具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号