首页> 外文会议>Prognostics and System Health Management Conference >Ball Screw Stability Degradation Stages Evaluation Based on Deep Residual Neural Network and Multi-sensor Fusion
【24h】

Ball Screw Stability Degradation Stages Evaluation Based on Deep Residual Neural Network and Multi-sensor Fusion

机译:基于深度残差神经网络和多传感器融合的滚珠丝杠稳定性下降阶段评估

获取原文

摘要

This paper proposes a method to evaluate the degradation stages of stability of the screw with data fusion technology and deep residual neural network. Firstly, the data provided by multi-sensors are fused, and then the time domain images of the signals are input into the deep residual neural network for training and testing. The effectiveness of the proposed method is verified using data sets collected from the degradation test bench of ball screw. The data sets contain massive samples involving 3 degradation stages under 9 working conditions obtained by 3 accelerometers. From the results and comparison, it can be found that the deep residual neural network can automatically extract the features from the original data layer by layer and achieve a better evaluation rate when it is used to evaluate the performance stage of the screw, and the multi-sensor data fusion vibration data can better reflect the degradation stages of the screw's performance. It is showed that this method enhances the intelligence of the evaluation compared with the traditional method.
机译:本文提出了一种利用数据融合技术和深度残差神经网络评估螺钉稳定性退化阶段的方法。首先,将多传感器提供的数据融合,然后将信号的时域图像输入到深度残差神经网络中进行训练和测试。利用从滚珠丝杠的降解试验台收集的数据集验证了该方法的有效性。数据集包含大量样品,涉及3个加速度计在9个工作条件下的3个降解阶段。从结果和比较中可以发现,当深度残差神经网络用于评估螺钉的性能阶段时,可以自动从原始数据中逐层自动提取特征,并获得更好的评估率。 -传感器数据融合振动数据可以更好地反映螺杆性能的下降阶段。结果表明,与传统方法相比,该方法增强了评估的智能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号