首页> 外文会议>Proceedings of the Twenty-Second annual symposium on parallelism in algorithms and architectures >Brief Announcement: Lower Bounds on Communication for Sparse Cholesky Factorization of a Model Problem
【24h】

Brief Announcement: Lower Bounds on Communication for Sparse Cholesky Factorization of a Model Problem

机译:简短公告:模型问题的稀疏霍夫斯基分解的沟通下界

获取原文
获取原文并翻译 | 示例

摘要

Previous work has shown that a lower bound on the number of words moved between large, slow memory and small, fast memory of size M by any conventional (non-Strassen like) direct linear algebra algorithm (matrix multiply, the LU, Cholesky, QR factorizations, ...) is Ω(#flops/(M)~(1/2)). This holds for dense or sparse matrices. There are analogous lower bounds for the number of messages, and for parallel algorithms instead of sequential algorithms. Our goal here is to find algorithms that attain these lower bounds on interesting classes of sparse matrices. We focus on matrices for which there is a lower bound on the number of flops of their Cholesky factorization. Our Cholesky lower bounds on communication hold for any possible ordering of the rows and columns of the matrix, and so are globally optimal in this sense. For matrices arising from discretization on two dimensional and three dimensional regular grids, we discuss sequential and parallel algorithms that are optimal in terms of communication. The algorithms turn out to require combining previously known sparse and dense Cholesky algorithms in simple ways.
机译:先前的工作表明,通过任何常规的(非Strassen式)直接线性代数算法(矩阵乘法,LU,Cholesky,QR),在大小为M的大容量,慢速内存和小容量,快速内存之间移动的单词数量的下限因式分解,...)为Ω(#flops /(M)〜(1/2))。这适用于密集或稀疏矩阵。消息数量,并行算法而不是顺序算法都有类似的下限。我们的目标是找到在有趣的稀疏矩阵类上达到这些下限的算法。我们关注的矩阵在其Cholesky因式分解的触发器数量上有一个下限。我们的Cholesky通信下界适用于矩阵的行和列的任何可能排序,因此从这个意义上讲是全局最优的。对于在二维和三维规则网格上离散化产生的矩阵,我们讨论了在通信方面最优的顺序和并行算法。原来,这些算法要求以简单的方式组合先前已知的稀疏算法和密集Cholesky算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号