首页> 外文会议>Proceedings of the 6th International Conference on Information Quality >Quality Mining A Data Mining Based Method for Data Quality Evaluation
【24h】

Quality Mining A Data Mining Based Method for Data Quality Evaluation

机译:质量挖掘一种基于数据挖掘的数据质量评估方法

获取原文

摘要

The value of information depends directly on the quality of the data used. Decisions are no better than the data on which they are based. How can organizations assess the quality of their information? How can they know if their data are useful? Quality control and management have become competitive needs for most businesses today, and there is a wide experience on the topic of quality. Approaches range from technical, such as statistical process control, to managerial, such as quality circles. An analogous experience basis is needed for data quality. In this paper we present a method for data quality evaluation based on Data Mining. We introduce QuAsAR, a mechanism for the systematic analysis of correctness based on the information itself. In order to evaluate the performance of the method, we apply it to a real case study. This case study helps us to analyze support and confidence intervals and distribution of erroneous data.
机译:信息的价值直接取决于所使用数据的质量。决策并不比决策所依据的数据更好。组织如何评估信息质量?他们怎么知道他们的数据是否有用?如今,质量控制和管理已成为大多数企业的竞争需求,并且在质量主题方面拥有丰富的经验。方法范围从技术(例如统计过程控制)到管理(例如质量圈)。数据质量需要类似的经验基础。在本文中,我们提出了一种基于数据挖掘的数据质量评估方法。我们介绍QuAsAR,这是一种基于信息本身对准确性进行系统分析的机制。为了评估该方法的性能,我们将其应用于实际案例研究。此案例研究可帮助我们分析支持和置信区间以及错误数据的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号