首页> 外文会议>Proceedings of 9th Workshop on Latest Advances in Scalable Algorithms for LargeScale Systems >On Advanced Monte Carlo Methods for Linear Algebra on Advanced Accelerator Architectures
【24h】

On Advanced Monte Carlo Methods for Linear Algebra on Advanced Accelerator Architectures

机译:基于高级加速器体系结构的线性代数的高级蒙特卡洛方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present computational experiments with the Markov Chain Monte Carlo Matrix Inversion ((MC)2MI) on several accelerator architectures and investigate their impact on performance and scalability of the method. The method is used as a preconditioner and for solving the corresponding system of linear equations iterative methods, such as generalized minimal residuals (GMRES) or bi-conjugate gradient (stabilized) (BICGstab), are used. Numerical experiments are carried out to highlight the benefits and deficiencies of both approaches and to assess their overall usefulness in light of scalability of the method.
机译:在本文中,我们介绍了使用马尔可夫链蒙特卡洛矩阵反演((MC)\ n 2 \ nMI),并研究它们对方法的性能和可伸缩性的影响。该方法用作预处理器,并且为求解线性方程组的相应系统,使用了迭代方法,例如广义最小残差(GMRES)或双共轭梯度(稳定)(BICGstab)。进行数值实验以突出两种方法的优点和不足,并根据该方法的可扩展性评估其总体实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号