首页> 外文会议>Proceedings of 2016 IEEE Information Technology,Networking, Electronic and Automation Control Conference >Unsupervised universal steganalysis combining image retrieval and outlier detection
【24h】

Unsupervised universal steganalysis combining image retrieval and outlier detection

机译:结合图像检索和离群值检测的无监督通用隐写分析

获取原文
获取原文并翻译 | 示例

摘要

Traditional steganalysis framework based on the binary classification is well developed. However, the unknown embedding algorithm and unknown cover source inevitably create so-called model mismatch problem, which leads to the significantly decrease of detection performance in practical applications. This study proposes a new unsupervised universal steganalysis framework that combines image retrieval and outlier detection to address the model mismatch problem. First, the statistical properties of the given test image are initially based to retrieve similar images from a massive cover image dataset as an aided image set. Second, outlier detection is conducted for the test image set, which is composed of the given test image and its aided image set to verify if the given test image is embedded. Experimental results show that the proposed framework can effectively achieve unsupervised universal steganalysis on JPEG heterogeneous image databases and avoid model mismatch.
机译:基于二元分类的传统隐写分析框架已得到很好的发展。然而,未知的嵌入算法和未知的掩盖源不可避免地产生了所谓的模型失配问题,这导致了实际应用中检测性能的显着下降。这项研究提出了一种新的无监督通用隐写分析框架,该框架结合了图像检索和离群值检测来解决模型不匹配问题。首先,给定测试图像的统计属性最初是基于从大量封面图像数据集中检索相似图像作为辅助图像集。其次,对测试图像集进行离群值检测,该测试图像集由给定的测试图像及其辅助图像集组成,以验证是否嵌入了给定的测试图像。实验结果表明,该框架可以有效地实现对JPEG异构图像数据库的无监督通用隐写分析,并避免模型不匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号