首页> 外文会议>Proceedings of the 2011 ACM conference on ubiquitous computing. >Recognition of Visual Memory Recall Processes Using Eye Movement Analysis
【24h】

Recognition of Visual Memory Recall Processes Using Eye Movement Analysis

机译:使用眼动分析识别视觉记忆召回过程

获取原文
获取原文并翻译 | 示例

摘要

Physical activity, location, as well as a person's psychophys-iological and affective state are common dimensions for developing context-aware systems in ubiquitous computing. An important yet missing contextual dimension is the cognitive context that comprises all aspects related to mental information processing, such as perception, memory, knowledge, or learning. In this work we investigate the feasibility of recognising visual memory recall. We use a recognition methodology that combines minimum redundancy maximum relevance feature selection (mRMR) with a support vector machine (SVM) classifier. We validate the methodology in a dual user study with a total of fourteen participants looking at familiar and unfamiliar pictures from four picture categories: abstract, landscapes, faces, and buildings. Using person-independent training, we are able to discriminate between familiar and unfamiliar abstract pictures with a top recognition rate of 84.3% (89.3% recall, 21.0% false positive rate) over all participants. We show that eye movement analysis is a promising approach to infer the cognitive context of a person and discuss the key challenges for the real-world implementation of eye-based cognition-aware systems.
机译:身体活动,位置以及一个人的心理生理和情感状态是在普适计算中开发情境感知系统的常见维度。一个重要而又缺失的上下文维度是认知上下文,它包括与心理信息处理相关的所有方面,例如感知,记忆,知识或学习。在这项工作中,我们研究了识别视觉记忆召回的可行性。我们使用一种识别方法,该方法将最小冗余最大相关特征选择(mRMR)与支持向量机(SVM)分类器结合在一起。我们在双重用户研究中验证了该方法的有效性,共有14名参与者查看了来自四个图片类别(抽象,风景,面部和建筑物)的熟悉和不熟悉的图片。使用独立于人的训练,我们能够区分熟悉和不熟悉的抽象图片,所有参与者的最高识别率是84.3%(召回率89.3%,错误肯定率21.0%)。我们表明,眼动分析是一种推断人的认知环境的有前途的方法,并讨论了基于眼的认知感知系统在现实世界中实现的关键挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号