首页> 外文会议>Privacy in Statistical Databases; Lecture Notes in Computer Science; 4302 >Combining Blanking and Noise Addition as a Data Disclosure Limitation Method
【24h】

Combining Blanking and Noise Addition as a Data Disclosure Limitation Method

机译:结合消隐和噪声加法作为数据披露限制方法

获取原文
获取原文并翻译 | 示例

摘要

Statistical disclosure limitation is widely used by data collecting institutions to provide safe individual data. In this paper, we propose to combine two separate disclosure limitation techniques blanking and addition of independent noise in order to protect the original data. The proposed approach yields a decrease in the probability of rei-dentifying/disclosing the individual information, and can be applied to linear as well as nonlinear regression models. We show how to combine the blanking method and the measurement error method, and how to estimate the model by the combination of the Simulation-Extrapolation (SIMEX) approach proposed by and the Inverse Probability Weighting (IPW) approach going back to. We produce Monte-Carlo evidence on how the reduction of data quality can be minimized by this masking procedure.
机译:数据收集机构广泛使用统计公开限制来提供安全的个人数据。在本文中,我们建议结合两种独立的公开限制技术,即消隐和添加独立噪声,以保护原始数据。所提出的方法降低了重新识别/公开个人信息的可能性,并且可以应用于线性和非线性回归模型。我们将展示如何结合消隐方法和测量误差方法,以及如何通过结合使用本文提出的模拟外推法(SIMEX)和逆概率加权(IPW)方法来估计模型。我们提供了蒙特卡洛的证据,说明如何通过此掩蔽程序将数据质量的下降降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号