首页> 外文会议>Principles and practice of constraint programming >On Computing Minimal Independent Support and Its Applications to Sampling and Counting (Extended Abstract)
【24h】

On Computing Minimal Independent Support and Its Applications to Sampling and Counting (Extended Abstract)

机译:关于计算最小独立支持及其在抽样和计数中的应用(扩展摘要)

获取原文
获取原文并翻译 | 示例

摘要

Constrained sampling and counting are two fundamental problems arising in domains ranging from artificial intelligence and security, to hardware and software testing. Recent approaches to approximate solutions for these problems rely on employing combinatorial (SAT/SMT) solvers and universal hash functions that are typically encoded as XOR constraints of length n/2 for an input formula with n variables. It has been observed that lower density XORs are easy to reason in practice and the runtime performance of solvers greatly improves with the decrease in the length of XOR-constraints. Therefore, recent research effort has focused on reduction of length of XOR constraints. Consequently, a notion of Independent Support was proposed, and it was shown that constructing XORs over independent support (if known) can lead to a significant reduction in the length of XOR constraints without losing the theoretical guarantees of sampling and counting algorithms.
机译:受限的采样和计数是从人工智能和安全性到硬件和软件测试等领域出现的两个基本问题。针对这些问题的近似解决方案的最新方法依赖于采用组合(SAT / SMT)求解器和通用哈希函数,对于具有n个变量的输入公式,通常将其编码为长度为n / 2的XOR约束。已经发现,较低密度的XOR在实践中很容易推理,并且随着XOR约束长度的减少,求解器的运行时性能大大提高。因此,最近的研究工作集中在减少XOR约束的长度上。因此,提出了独立支持的概念,并且表明在独立支持之上构造XOR(如果已知)可以导致XOR约束长度的显着减少,而不会丢失采样和计数算法的理论保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号