首页> 外文期刊>Constraints >On computing minimal independent support and its applications to sampling and counting
【24h】

On computing minimal independent support and its applications to sampling and counting

机译:关于计算最小的独立支持及其在采样和计数中的应用

获取原文
获取原文并翻译 | 示例

摘要

Constrained sampling and counting are two fundamental problems arising in domains ranging from artificial intelligence and security, to hardware and software testing. Recent approaches to approximate solutions for these problems rely on employing SAT solvers and universal hash functions that are typically encoded as XOR constraints of length n/2 for an input formula with n variables. As the runtime performance of SAT solvers heavily depends on the length of XOR constraints, recent research effort has been focused on reduction of length of XOR constraints. Consequently, a notion of Independent Support was proposed, and it was shown that constructing XORs over independent support (if known) can lead to a significant reduction in the length of XOR constraints without losing the theoretical guarantees of sampling and counting algorithms. In this paper, we present the first algorithmic procedure (and a corresponding tool, called MIS) to determine minimal independent support for a given CNF formula by employing a reduction to group minimal unsatisfiable subsets (GMUS). By utilizing minimal independent supports computed by MIS, we provide new tighter bounds on the length of XOR constraints for constrained counting and sampling. Furthermore, the universal hash functions constructed from independent supports computed by MIS provide two to three orders of magnitude performance improvement in state-of-the-art constrained sampling and counting tools, while still retaining theoretical guarantees.
机译:受限的采样和计数是从人工智能和安全性到硬件和软件测试等领域出现的两个基本问题。针对这些问题的近似解决方案的最新方法依赖于采用SAT求解器和通用哈希函数,这些函数通常被编码为具有n个变量的输入公式的长度为n / 2的XOR约束。由于SAT求解器的运行时性能在很大程度上取决于XOR约束的长度,因此最近的研究工作集中在减少XOR约束的长度上。因此,提出了独立支持的概念,并且表明在独立支持之上构造XOR(如果已知)可以导致XOR约束长度的显着减少,而不会丢失采样和计数算法的理论保证。在本文中,我们介绍了第一种算法程序(以及一个相应的工具,称为MIS),它通过使用归约法将最小不满足子集(GMUS)分组来确定给定CNF公式的最小独立支持。通过利用MIS计算的最小独立支持,我们为XOR约束的长度提供了新的更严格的界限,以用于受约束的计数和采样。此外,由MIS计算的独立支持构造的通用哈希函数在最新的受限采样和计数工具中提供了2到3个数量级的性能改进,同时仍保留了理论上的保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号