首页> 外文会议>Principles and practice of constraint programming >Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP
【24h】

Anytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP

机译:加权CSP的具有树分解的随时混合最佳优先搜索

获取原文
获取原文并翻译 | 示例

摘要

We propose Hybrid Best-First Search (HBFS), a search strategy for optimization problems that combines Best-First Search (BFS) and Depth-First Search (DFS). Like BFS, HBFS provides an anytime global lower bound on the optimum, while also providing anytime upper bounds, like DFS. Hence, it provides feedback on the progress of search and solution quality in the form of an optimality gap. In addition, it exhibits highly dynamic behavior that allows it to perform on par with methods like limited discrepancy search and frequent restarting in terms of quickly finding good solutions. We also use the lower bounds reported by HBFS in problems with small treewidth, by integrating it into Backtracking with Tree Decomposition (BTD). BTD-HBFS exploits the lower bounds reported by HBFS in individual clusters to improve the anytime behavior and global pruning lower bound of BTD. In an extensive empirical evaluation on optimization problems from a variety of application domains, we show that both HBFS and BTD-H BFS improve both anytime and overall performance compared to their counterparts.
机译:我们提出了混合最佳优先搜索(HBFS),这是一种结合了最佳优先搜索(BFS)和深度优先搜索(DFS)的优化问题搜索策略。像BFS一样,HBFS提供最佳时空的全局下限,同时也提供DFS之类的随时随地的上限。因此,它以最佳缺口的形式提供有关搜索进度和解决方案质量的反馈。此外,它还具有高度动态的行为,使其可以与诸如有限差异搜索和频繁重新启动等方法相提并论,以快速找到好的解决方案。我们还将HBFS报告的下限用于具有较小树宽的问题,方法是将其集成到具有树分解(BTD)的回溯中。 BTD-HBFS利用HBFS在单个集群中报告的下限来改善BTD的随时行为和全局修剪下限。在对来自各种应用领域的优化问题的广泛实证评估中,我们表明HBFS和BTD-H BFS与同类产品相比在任何时候和总体性能上均得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号