首页> 外文会议>Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on >Image segmentation using nearest neighbor classifiers based on kernel formation for medical images
【24h】

Image segmentation using nearest neighbor classifiers based on kernel formation for medical images

机译:使用基于核形成的最近邻分类器对医学图像进行图像分割

获取原文
获取原文并翻译 | 示例

摘要

Image Segmentation is one of the significant elements in the part of image processing. It becomes most essential demanding factor while typically dealing with medical image segmentation. In this paper, proposal of our work comprises of formation of kernel for the medical images by performing the deviation of mapped image data within the scope of each region from the piecewise constant model and based on the regularization term based on the function of indices value of the region. The functional objective minimization is carried out by two steps minimization in image segmentation using graph cut methods, and minimization with respect to region parameters using constant point computation. Nearest neighbor classifiers are introduced to the benchmarked image data segmented portions. Among the different methods in supervised statistical pattern recognition, the nearest neighbor rule results in achieving high performance without requirement of the prior assumptions about the distributions from which the training sets are taken.
机译:图像分割是图像处理部分中的重要元素之一。它通常在处理医学图像分割时成为最重要的要求因素。在本文中,我们的工作建议包括通过执行每个区域范围内的映射图像数据与分段常数模型之间的偏差以及基于基于指标值函数的正则项来形成医学图像的核。该区域。通过使用图割方法在图像分割中分两步进行最小化,以及使用恒点计算在区域参数方面进行两步最小化来实现功能目标的最小化。最近的邻居分类器被引入基准图像数据分割部分。在监督统计模式识别的不同方法中,最近邻规则可实现高性能,而无需事先假设要采用的训练集分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号