首页> 外文会议>Pattern recognition in bioinformatics >Cross-Platform Analysis with Binarized Gene Expression Data
【24h】

Cross-Platform Analysis with Binarized Gene Expression Data

机译:二值化基因表达数据的跨平台分析

获取原文
获取原文并翻译 | 示例

摘要

With widespread use of microarray technology as a potential diagnostics tool, the comparison of results obtained from the use of different platforms is of interest. When inference methods are designed using data collected using a particular platform, they are unlikely to work directly on measurements taken from a different type of array. We report on this cross-platform transfer problem, and show that working with transcriptome representations at binary numerical precision, similar to the gene expression bar code method, helps circumvent the variability across platforms in several cancer classification tasks. We compare our approach with a recent machine learning method specifically designed for shifting distributions, i.e., problems in which the training and testing data are not drawn from identical probability distributions, and show superior performance in three of the four problems in which we could directly compare.
机译:随着微阵列技术作为一种潜在的诊断工具的广泛使用,比较使用不同平台获得的结果令人感兴趣。当使用通过特定平台收集的数据设计推理方法时,它们不太可能直接用于从不同类型的阵列进行的测量。我们报告了这一跨平台转移问题,并表明以类似于基因表达条形码方法的二进制数值精度使用转录组表示形式,有助于绕过某些癌症分类任务中跨平台的可变性。我们将我们的方法与专为转移分布而设计的最新机器学习方法进行了比较,例如,不是从相同的概率分布中提取训练和测试数据的问题,并且在我们可以直接比较的四个问题中的三个问题中,我们表现出了卓越的性能。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号