首页> 外文会议>Pattern Recognition in Bioinformatics >Prediction of Transcription Factor Families Using DNA Sequence Features
【24h】

Prediction of Transcription Factor Families Using DNA Sequence Features

机译:使用DNA序列特征预测转录因子家族

获取原文
获取原文并翻译 | 示例

摘要

Understanding the mechanisms of protein-DNA interaction is of critical importance in biology. Transcription factor (TF) binding to a specific DNA sequence depends on at least two factors: A protein-level DNA-binding domain and a nucleotide-level specific sequence serving as a TF binding site. TFs have been classified into families based on these factors. TFs within each family bind to specific nucleotide sequences in a very similar fashion. Identification of the TF family that might bind at a particular nucleotide sequence requires a machine learning approach. Here we considered two sets of features based on DNA sequences and their physicochemical properties and applied a one-versus-all SVM (OVA-SVM) with class-wise optimized features to identify TF family-specific features in DNA sequences. Using this approach, a mean prediction accuracy of ~80% was achieved, which represents an improvement of ~7% over previous approaches on the same data.
机译:了解蛋白质-DNA相互作用的机制在生物学中至关重要。转录因子(TF)与特定DNA序列的结合至少取决于两个因素:蛋白质水平的DNA结合结构域和充当TF结合位点的核苷酸水平的特异性序列。 TF已根据这些因素分为多个家族。每个家族中的TF以非常相似的方式结合特定的核苷酸序列。鉴定可能结合特定核苷酸序列的TF家族需要机器学习方法。在这里,我们考虑了基于DNA序列及其理化特性的两组特征,并应用了具有类优化特征的单反SVM(OVA-SVM)来识别DNA序列中TF家族特有的特征。使用这种方法,平均预测准确度达到〜80%,比相同数据的先前方法提高了7%左右。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号