首页> 外文会议>Pattern Recognition in Bioinformatics >Sequence Based Prediction of Protein Mutant Stability and Discrimination of Thermophilic Proteins
【24h】

Sequence Based Prediction of Protein Mutant Stability and Discrimination of Thermophilic Proteins

机译:基于序列的蛋白质突变稳定性预测和嗜热蛋白质的区分

获取原文
获取原文并翻译 | 示例

摘要

Prediction of protein stability upon amino acid substitution and discrimination of thermophilic proteins from mesophilic ones are important problems in designing stable proteins. We have developed a classification rule generator using the information about wild-type, mutant, three neighboring residues and experimentally observed stability data. Utilizing the rules, we have developed a method based on decision tree for discriminating the stabilizing and destabilizing mutants and predicting protein stability changes upon single point mutations, which showed an accuracy of 82% and a correlation of 0.70, respectively. In addition, we have systematically analyzed the characteristic features of amino acid residues in 3075 mesophilic and 1609 thermophilic proteins belonging to 9 and 15 families, respectively, and developed methods for discriminating them. The method based on neural network could discriminate them at the 5-fold cross-validation accuracy of 89% in a dataset of 4684 proteins and 91% in a test set of 707 proteins.
机译:氨基酸取代后蛋白质稳定性的预测以及嗜温蛋白质与嗜温蛋白质的区分是设计稳定蛋白质时的重要问题。我们使用有关野生型,突变体,三个相邻残基的信息和实验观察到的稳定性数据开发了分类规则生成器。利用这些规则,我们开发了一种基于决策树的方法,该方法可以区分稳定和不稳定的突变体,并预测单点突变后蛋白质稳定性的变化,其准确性分别为82%和0.70。此外,我们系统地分析了分别属于9和15个家族的3075个嗜温蛋白和1609个嗜热蛋白中氨基酸残基的特征,并开发了区分它们的方法。基于神经网络的方法可以在4684个蛋白质的数据集中以89%的5倍交叉验证准确性对它们进行区分,而在707个蛋白质的测试集中以91%的5倍交叉验证准确性来区分它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号