首页> 外文会议>Optical Pattern Recognition XVI >Enhanced fingerprint identification using dynamic neural network and fringe-adjusted joint transform correlation
【24h】

Enhanced fingerprint identification using dynamic neural network and fringe-adjusted joint transform correlation

机译:使用动态神经网络和边缘调整联合变换相关性增强指纹识别

获取原文
获取原文并翻译 | 示例

摘要

The parallel processing capability and adaptive filtering features of dynamic neural networks offer highly efficient feature extraction and enhancement capability for fingerprint images. The most important aspect of the fingerprint enhancement is the extraction of relevant details with respect to distributed complex features. For this purpose, an efficient dynamic neural filtering technique has been proposed in this paper. After the enhancement process, fingerprint identification ishas been achieved using joint transform correlation (JTC) algorithm. Since the fringe-adjusted JTC algorithm has been found to yield significantly better correlation output compared to alternate JTCs, we used it in this study. The identification test results are presented to verify the effectiveness of the proposed enhancement and identification algorithms.
机译:动态神经网络的并行处理能力和自适应过滤功能为指纹图像提供了高效的特征提取和增强功能。指纹增强的最重要方面是提取有关分布式复杂特征的相关细节。为此,本文提出了一种有效的动态神经滤波技术。经过增强处理后,已使用联合变换相关(JTC)算法实现了指纹识别。由于已发现边缘调整后的JTC算法与其他JTC相比可产生明显更好的相关输出,因此我们在本研究中使用了该算法。提出了识别测试结果,以验证所提出的增强和识别算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号