首页> 外文会议>Optical Microlithography XIX pt.1 >From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade
【24h】

From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade

机译:从光学接近度校正到光刻驱动的物理设计(1996-2006年):十年的分辨率增强技术和下一个十年的路线图促成因素

获取原文
获取原文并翻译 | 示例

摘要

The past decade has experienced a remarkable synergy between Resolution Enhancement Technologies (RET) in Optical Lithography and Optical Proximity Correction (OPC). This heterogeneous array of patterning solutions ranges from simple rule-based to more sophisticated model-based corrections, including sub-resolution assist features, partially transmitting masks and various dual mask approaches. A survey of the evolutionary development from the early introduction of the first OPC engines in 1996 to the debut of Immersion Lithography in 2006 reveals that the convergence of RET and OPC has also enabled a progressive selection and fine-tuning of Geometric Design Rules (GDR) at each technology node, based on systematic adoption of lithographic verification. This paper describes the use of "full-chip" lithography verification engines in current Design For Manufacturing (DFM) practices and extends the analysis to identify a set of key technologies and applications for the 45, 32 and 22 nm nodes. As OPC-derived tools enter the stage of maturity, from a software standpoint, their use-model is being greatly broadened from the back-end mask tape-out flow, upstream, directly integrated into physical design verification. Lithography awareness into the physical design environment, mediated by new DFM verification tools and flows, is driving various forms of manufacturable physical layout implementation: from Restricted Design Rules and Flexible Design Rules to Regular Circuit Fabrics. As new lithography solutions, such as immersion lithography and EUV, will have to be deployed within a complex technology framework, the paper also examines the trend towards "layout design regularization" and its implications for patterning and next generation lithographies.
机译:在过去的十年中,光学光刻技术中的分辨率增强技术(RET)与光学接近度校正(OPC)之间实现了惊人的协同作用。图案解决方案的这种异构阵列范围从简单的基于规则的修正到更复杂的基于模型的修正,包括子分辨率辅助功能,部分透射掩模和各种双掩模方法。对从1996年第一台OPC发动机的早期推出到2006年Immersion Lithography的首次面世的演变发展进行的一项调查显示,RET和OPC的融合也使几何设计规则(GDR)得以逐步选择和微调。在每个技术节点上,基于系统地采用光刻验证。本文介绍了在当前的制造设计(DFM)实践中使用“全芯片”光刻验证引擎的情况,并扩展了分析范围,以确定用于45、32和22 nm节点的一组关键技术和应用。从软件的角度来看,随着OPC衍生的工具进入成熟阶段,它们的使用模型已从后端掩膜流式传输流程(上游)直接扩展到物理设计验证中,从而得到了极大的扩展。通过新的DFM验证工具和流程,光刻技术对物理设计环境的意识正在推动各种形式的可制造物理布局实施:从受限设计规则和灵活设计规则到常规电路结构。由于必须在复杂的技术框架内部署新的光刻解决方案,例如浸没式光刻和EUV,因此本文还将探讨“布局设计规则化”的趋势及其对图案化和下一代光刻的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号