首页> 外文会议>Conference on Optical Microlithography >From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade
【24h】

From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade

机译:从光学邻近校正到光刻驱动的物理设计(1996-2006):下十年的10年分辨率增强技术和路线图推动器

获取原文

摘要

The past decade has experienced a remarkable synergy between Resolution Enhancement Technologies (RET) in Optical Lithography and Optical Proximity Correction (OPC). This heterogeneous array of patterning solutions ranges from simple rule-based to more sophisticated model-based corrections, including sub-resolution assist features, partially transmitting masks and various dual mask approaches. A survey of the evolutionary development from the early introduction of the first OPC engines in 1996 to the debut of Immersion Lithography in 2006 reveals that the convergence of RET and OPC has also enabled a progressive selection and fine-tuning of Geometric Design Rules (GDR) at each technology node, based on systematic adoption of lithographic verification. This paper describes the use of "full-chip" lithography verification engines in current Design For Manufacturing (DFM) practices and extends the analysis to identify a set of key technologies and applications for the 45, 32 and 22 nm nodes. As OPC-derived tools enter the stage of maturity, from a software standpoint, their use-model is being greatly broadened from the back-end mask tape-out flow, upstream, directly integrated into physical design verification. Lithography awareness into the physical design environment, mediated by new DFM verification tools and flows, is driving various forms of manufacturable physical layout implementation: from Restricted Design Rules and Flexible Design Rules to Regular Circuit Fabrics. As new lithography solutions, such as immersion lithography and EUV, will have to be deployed within a complex technology framework, the paper also examines the trend towards "layout design regularization" and its implications for patterning and next generation lithographies.
机译:过去十年经历了在光学光刻分辨率增强技术(RET)和光学邻近校正(OPC)之间的显着的协同效应。这种异构从简单的图案化的解决方案的范围的阵列规则为基础,以更复杂的基于模型的校正,包括亚分辨率的辅助特征,部分透射掩模和各种双掩模方法。从早期引进的第一OPC的发动机在1996年至液浸式光刻在2006年首次亮相的进化发展的一项调查显示,RET和OPC的融合也使一个渐进的选择和几何设计规则的微调(GDR)在每一个技术节点的基础上,系统采用光刻验证。本文描述了使用“全芯片”光刻验证引擎在当前制造设计(DFM)做法和扩展了分析,以确定一组关键技术和应用的为45,32和22纳米节点。作为OPC衍生工具进入成熟阶段,从软件的角度,它们的使用模型被大大从后端掩蔽带向外流动变宽,上游,直接集成到物理设计验证。光刻认识到物理设计环境,通过新的DFM验证工具介导和流程,推动各种形式制造的物理布局实现的:从严格的设计规则,灵活的设计规则,定期巡回面料。随着新光刻解决方案,如浸没式光刻技术和EUV,必须是一个复杂的技术框架内展开,本文还审视对“布局设计转正”及其图案化和下一代平版印刷影响的趋势。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号