首页> 外文会议>OCEANS - MTS/IEEE Kobe Techno-Oceans >Listening to the Deep: Exploring Marine Soundscape Variability by Information Retrieval Techniques
【24h】

Listening to the Deep: Exploring Marine Soundscape Variability by Information Retrieval Techniques

机译:聆听深处:通过信息检索技术探索海洋声景变化

获取原文

摘要

Information on the dynamics of the deep-sea ecosystem is essential for conservation management. The marine soundscape has been considered as an acoustical sensing platform to investigate geophysical events, marine biodiversity, and human activities. However, analysis of the marine soundscape remains difficult because of the influence of simultaneous sound sources. In this study, we integrated machine learning-based information retrieval techniques to analyze the variability of the marine soundscape off northeastern Taiwan. A long-term spectral average was employed to visualize the long-duration recordings of the Marine Cable Hosted Observatory (MACHO). Biotic and abiotic soundscape components were separated by applying periodicity-coded nonnegative matrix factorization. Finally, various acoustic events were identified using k-means clustering. Our results show that the MACHO recordings of June 2012 contain multiple sound sources. Cetacean vocalizations, an unidentified biological chorus, environmental noise, and system noise can be accurately separated without an audio recognition database. Cetacean vocalizations were primarily detected at night, which is consistent with the detection results of two rule-based detectors. The unidentified biological chorus, ranging between 2 and 3 kHz, was primarily recorded between 7 p.m. and midnight during the studied period. On the basis of source separation, more acoustic events can be identified in the clustering result. The proposed information retrieval techniques effectively reduce the difficulty in the analysis of marine soundscape. The unsupervised approach of source separation and clustering can improve the investigation regarding the temporal behavior and spectral characteristics of different sound sources. Based on the findings in the present study, we believe that variability of the deep-sea ecosystem can be efficiently investigated by combining the soundscape information retrieval techniques and cabled hydrophone networks in the future.
机译:关于深海生态系统动态的信息对于保护管理至关重要。海洋声景已被视为研究地球物理事件,海洋生物多样性和人类活动的声学传感平台。然而,由于同时声源的影响,对海洋声景的分析仍然很困难。在这项研究中,我们集成了基于机器学习的信息检索技术,以分析台湾东北部海洋声景的变化性。长期频谱平均值用于可视化海洋电缆托管天文台(MACHO)的长期记录。通过应用周期性编码的非负矩阵分解来分离生物和非生物声景组件。最后,使用k均值聚类确定了各种声音事件。我们的结果表明,2012年6月的MACHO录音包含多个声源。鲸类动物的发声,未识别的生物合唱,环境噪声和系统噪声可以在没有音频识别数据库的情况下准确分离。鲸类的发声主要是在晚上检测到的,这与两个基于规则的检测器的检测结果一致。未记录的生物合唱范围为2至3 kHz,主要记录在下午7点之间。和研究期间的午夜。基于源分离,可以在聚类结果中识别更多的声音事件。所提出的信息检索技术有效地减少了海洋声景分析的难度。源文件分离和聚类的无监督方法可以改进有关不同声源的时间行为和频谱特性的研究。根据本研究的发现,我们相信,将来可以通过结合使用声景信息检索技术和有线水听器网络来有效地调查深海生态系统的可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号