首页> 外文会议>Next-Generation Robotics II; and Machine Intelligence and Bio-inspired Computation: Theory and Applications IX >Realistic Computer Network Simulation for Network Intrusion Detection Dataset Generation
【24h】

Realistic Computer Network Simulation for Network Intrusion Detection Dataset Generation

机译:用于网络入侵检测数据集生成的真实计算机网络仿真

获取原文
获取原文并翻译 | 示例

摘要

The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.
机译:KDD-99杯数据集已死。尽管可以继续用作玩具示例,但此数据集的使用期限使它几乎完全无用于入侵检测研究和数据挖掘。数据集中使用的许多攻击都是过时的,不能反映当今网络中对于入侵检测至关重要的功能。创建一个包含当今在互联网上发现的大部分攻击的新数据集可能会很有用,但最终会遇到与KDD-99杯赛相同的问题;一段时间后,它的用处将会减少。为了继续研究入侵检测,新数据集的生成需要与攻击者一样动态和快速。仅检查现有的网络流量并使用入侵分析等领域专家来标记流量是低效,昂贵且无法扩展的。唯一可行的方法是使用包括虚拟化,Metasploit和Armitage等攻击工具集以及威胁和用户行为的复杂仿真的技术进行仿真。动态地模拟实际的用户行为和网络入侵事件,不仅使研究人员能够快速改变场景,而且还可以通过与生成的数据进行交互来在线测试入侵检测机制。识别出新的威胁行为后,可以将其添加到仿真中,以便更快地确定现有和正在进行的网络入侵技术,方法和模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号