首页> 外文会议>Neural Networks and Computational Intelligence >On Classification of Alarms from Network Intrusion Detection System Using Multi-layer Feed-forward Neural Networks
【24h】

On Classification of Alarms from Network Intrusion Detection System Using Multi-layer Feed-forward Neural Networks

机译:基于多层前馈神经网络的网络入侵检测系统的告警分类研究

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the subject of classification of alarm messages given by the Intrusion Detection System (IDS). A multilayer feed-forward neural network is employed for deciding the importance of the message given by the IDS. The messages given by the IDS have been collected and they are labeled by an expert for the training purpose. The original message fields have been normalized so that they can be used as inputs for the neural network. The training set has been partitioned into two parts, and 20 different initial seeds are used along with different number of hidden units for training the proposed neural network. The results obtained in the preliminary part of this work are promising. The average accuracy rate obtained by the network is 86.09 % with 8 hidden units.
机译:这项研究的重点是入侵检测系统(IDS)提供的警报消息的分类。多层前馈神经网络用于确定IDS给出的消息的重要性。 IDS给出的消息已被收集,并由专家标记以进行培训。原始消息字段已经过规范化,因此可以用作神经网络的输入。训练集已分为两部分,并且使用20种不同的初始种子以及不同数量的隐藏单元来训练拟议的神经网络。在这项工作的初步部分中获得的结果是有希望的。网络获得的平均准确率是86.09%,有8个隐藏单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号