首页> 外文会议>Natural language processing and information systems >Querying Linked Data Using Semantic Relatedness: A Vocabulary Independent Approach
【24h】

Querying Linked Data Using Semantic Relatedness: A Vocabulary Independent Approach

机译:使用语义相关性查询链接数据:一种独立于词汇的方法

获取原文
获取原文并翻译 | 示例

摘要

Linked Data brings the promise of incorporating a new dimension to the Web where the availability of Web-scale data can determine a paradigmatic transformation of the Web and its applications. However, together with its opportunities, Linked Data brings inherent challenges in the way users and applications consume the available data. Users consuming Linked Data on the Web, or on corporate intranets, should be able to search and query data spread over potentially a large number of heterogeneous, complex and distributed datasets. Ideally, a query mechanism for Linked Data should abstract users from the representation of data. This work focuses on the investigation of a vocabulary independent natural language query mechanism for Linked Data, using an approach based on the combination of entity search, a Wikipedia-based semantic relatedness measure and spreading activation. The combination of these three elements in a query mechanism for Linked Data is a new contribution in the space. Wikipedia-based relatedness measures address existing limitations of existing works which are based on similarity measures/term expansion based on WordNet. Experimental results using the query mechanism to answer 50 natural language queries over DBPedia achieved a mean reciprocal rank of 61.4%, an average precision of 48.7% and average recall of 57.2%, answering 70% of the queries.
机译:链接数据带来了将新的维度整合到Web中的希望,其中Web规模数据的可用性可以确定Web及其应用程序的范式转换。但是,链接数据及其带来的机遇给用户和应用程序使用可用数据的方式带来了固有的挑战。使用Web或公司Intranet上的链接数据的用户应该能够搜索和查询散布在潜在的大量异构,复杂和分布式数据集上的数据。理想情况下,链接数据的查询机制应将用户从数据表示中抽象出来。这项工作集中于对链接数据的词汇独立自然语言查询机制的研究,它使用一种基于实体搜索,基于维基百科的语义相关性度量和传播激活相结合的方法。在链接数据的查询机制中,这三个元素的组合是该领域的新贡献。基于维基百科的相关性度量解决了现有作品的现有限制,这些限制基于基于WordNet的相似性度量/术语扩展。使用查询机制回答DBPedia上的50种自然语言查询的实验结果,平均倒数排名为61.4%,平均精度为48.7%,平均回想率为57.2%,回答了70%的查询。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号