首页> 外文会议>Nanophotonic Materials and Systems II >Comparison of fabrication methods ot sub-100 nm nano-optical structures and devices
【24h】

Comparison of fabrication methods ot sub-100 nm nano-optical structures and devices

机译:低于100 nm的纳米光学结构和器件的制造方法比较

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Nano-optical devices are raising more and more interest for a variety of applications. From single molecule detection at high molecular concentration by Fluorescence Correlation Spectroscopy (FCS) through optical multiplexing with photonic crystal structures into the exciting field of negative index of refraction materials, the hardware functional dimensions and surely the tolerances are reaching the lower tens of nanometer range. The fabrication of such devices, i.e. the machining of optically interesting materials and material combinations (dielectric, semiconducting, or metallic) at this scale needs adaptation of classical nanostructuring technologies like Electron Beam Lithography (EBL), or the application of serial direct machining technologies like Focused Charged Particle Beam Etching or Deposition with electrons or Ga ions. For low excitation volume FCS measurements, EBL is used for production of high quality nano-scale sub-wavelength apertures in optically opaque (150 nm thick) metal films. The process consists in high aspect ratio patterning of a thick negative e-beam resist film followed by metal lift off. The optically transparent substrate allows the production of any 2D aperture geometry. Difficulties of the production process and their limits are presented. Direct serial machining with charged particle beams shows excellent flexibility and is an interesting 3D alternative method. Deposition by decomposing volatile chemicals under an ion/electron probe, which can be as small as 7nm/1nm, this technique allows for rapid, local prototyping of 2D and 3D nano-structures with highest lateral and axial resolution. The deposited material can be tuned to homogeneous, nanocomposite or crystalline, metallic or transparent, opening the way to applications in photonic crystals and plasmonics. An original in-situ micro-reflectometry method permits the real time control of the growth of the deposits.
机译:纳米光学器件在各种应用中引起了越来越多的兴趣。从通过荧光相关光谱(FCS)在高分子浓度下的单分子检测到与光子晶体结构的光学多路复用到负折射率材料的令人兴奋的领域,硬件功能尺寸以及公差肯定会达到几十纳米的较低范围。这种设备的制造,即以这种规模加工光学上感兴趣的材料和材料组合(介电,半导体或金属),需要适应经典的纳米结构技术,例如电子束光刻(EBL),或应用串行直接加工技术,例如用电子或Ga离子对聚焦的带电粒子束进行蚀刻或沉积。对于低激发体积FCS测量,EBL用于在不透光(150 nm厚)的金属膜中生产高质量的纳米级亚波长孔。该方法包括厚的负电子束抗蚀剂膜的高纵横比图案化,然后进行金属剥离。光学透明的基板允许产生任何2D孔径的几何形状。介绍了生产过程中的困难及其极限。带电粒子束的直接串行加工显示出出色的灵活性,是一种有趣的3D替代方法。通过在离子/电子探针下分解挥发性化学物质进行沉积,离子/电子探针的尺寸可小至7nm / 1nm,该技术可实现具有最高横向和轴向分辨率的2D和3D纳米结构的快速局部原型制作。可以将沉积的材料调整为均质,纳米复合材料或晶体,金属或透明材料,从而为光子晶体和等离激元的应用打开了道路。原始的原位微折光法可以实时控制沉积物的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号